Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 42(4): 1629-1646, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37199265

RESUMEN

Coumarins are a highly privileged scaffold in medicinal chemistry. It is present in many natural products and is reported to display various pharmacological properties. A large plethora of compounds based on the coumarin ring system have been synthesized and were found to possess biological activities such as anticonvulsant, antiviral, anti-inflammatory, antibacterial, antioxidant as well as neuroprotective properties. Despite the wide activity spectrum of coumarins, its naturally occurring derivatives are yet to be investigated in detail. In the current study, a chemical library was created to assemble all chemical information related to naturally occurring coumarins from the literature. Additionally, a multi-stage virtual screening combining QSAR modeling, molecular docking, and ADMET prediction was conducted against monoamine oxidase B and acetylcholinesterase, two relevant targets known for their neuroprotective properties and 'disease-modifying' potential in Parkinson's and Alzheimer's disease. Our findings revealed ten coumarin derivatives that may act as dual-target drugs against MAO-B and AChE. Two coumarin candidates were selected from the molecular docking study: CDB0738 and CDB0046 displayed favorable interactions for both proteins as well as suitable ADMET profiles. The stability of the selected coumarins was assessed through 100 ns molecular dynamics simulations which revealed promising stability through key molecular interactions for CDB0738 to act as dual inhibitor of MAO-B and AChE. However, experimental studies are necessary to evaluate the bioactivity of the proposed candidate. The current results may generate an increasing interest in bioprospecting naturally occurring coumarins as potential candidates against relevant macromolecular targets by encouraging virtual screening studies against our chemical library.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación de Dinámica Molecular , Monoaminooxidasa , Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/metabolismo , Simulación del Acoplamiento Molecular , Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Relación Estructura-Actividad Cuantitativa , Cumarinas/farmacología , Cumarinas/química , Relación Estructura-Actividad
2.
Sci Rep ; 13(1): 7870, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188743

RESUMEN

In recent years, the outbreak of infectious disease caused by Zika Virus (ZIKV) has posed a major threat to global public health, calling for the development of therapeutics to treat ZIKV disease. Several possible druggable targets involved in virus replication have been identified. In search of additional potential inhibitors, we screened 2895 FDA-approved compounds using Non-Structural Protein 5 (NS5) as a target utilizing virtual screening of in-silco methods. The top 28 compounds with the threshold of binding energy -7.2 kcal/mol value were selected and were cross-docked on the three-dimensional structure of NS5 using AutoDock Tools. Of the 2895 compounds screened, five compounds (Ceforanide, Squanavir, Amcinonide, Cefpiramide, and Olmesartan_Medoxomil) ranked highest based on filtering of having the least negative interactions with the NS5 and were selected for Molecular Dynamic Simulations (MDS) studies. Various parameters such as RMSD, RMSF, Rg, SASA, PCA and binding free energy were calculated to validate the binding of compounds to the target, ZIKV-NS5. The binding free energy was found to be -114.53, -182.01, -168.19, -91.16, -122.56, and -150.65 kJ mol-1 for NS5-SFG, NS5-Ceforanide, NS5-Squanavir, NS5-Amcinonide, NS5-Cefpiramide, and NS5-Ol_Me complexes respectively. The binding energy calculations suggested Cefpiramide and Olmesartan_Medoxomil (Ol_Me) as the most stable compounds for binding to NS5, indicating a strong rationale for their use as lead compounds for development of ZIKV inhibitors. As these drugs have been evaluated on pharmacokinetics and pharmacodynamics parameters only, in vitro and in vivo testing and their impact on Zika viral cell culture may suggest their clinical trials on ZIKV patients.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/metabolismo , Infección por el Virus Zika/tratamiento farmacológico , Unión Proteica , Metiltransferasas/metabolismo , Reposicionamiento de Medicamentos , Proteínas no Estructurales Virales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...